On deformations of hyperbolic 3–manifolds with geodesic boundary
نویسندگان
چکیده
Let M be a complete finite-volume hyperbolic 3–manifold with compact non-empty geodesic boundary and k toric cusps, and let T be a geometric partially truncated triangulation of M . We show that the variety of solutions of consistency equations for T is a smooth manifold or real dimension 2k near the point representing the unique complete structure on M . As a consequence, the relation between deformations of triangulations and deformations of representations is completely understood, at least in a neighbourhood of the complete structure. This allows us to prove, for example, that small deformations of the complete triangulation affect the compact tetrahedra and the hyperbolic structure on the geodesic boundary only at the second order.
منابع مشابه
Similar Fillings and Isolation of Cusps of Hyperbolic 3-manifolds
In this paper we deepen the analysis of certain classes Mg,k of hyperbolic 3-manifolds that were introduced in a previous work by B. Martelli, C. Petronio and the author. Each element of Mg,k is an oriented complete finite-volume hyperbolic 3manifold with compact connected geodesic boundary of genus g and k cusps. We study small deformations of the complete hyperbolic structure of manifolds in ...
متن کاملHyperbolic Cone-manifolds, Short Geodesics, and Schwarzian Derivatives
With his hyperbolic Dehn surgery theorem and later the orbifold theorem, Thurston demonstrated the power of using hyperbolic cone-manifolds to understand complete, non-singular hyperbolic 3-manifolds. Hodgson and Kerckhoff introduced analytic techniques to the study of cone-manifolds that they have used to prove deep results about finite volume hyperbolic 3-manifolds. In this paper we use Hodgs...
متن کاملCommensurability of hyperbolic manifolds with geodesic boundary
Suppose n > 3, let M1,M2 be n-dimensional connected complete finitevolume hyperbolic manifolds with non-empty geodesic boundary, and suppose that π1(M1) is quasi-isometric to π1(M2) (with respect to the word metric). Also suppose that if n = 3, then ∂M1 and ∂M2 are compact. We show that M1 is commensurable with M2. Moreover, we show that there exist homotopically equivalent hyperbolic 3-manifol...
متن کاملConstruction and Recognition of Hyperbolic 3-Manifolds with Geodesic Boundary
We extend to the context of hyperbolic 3-manifolds with geodesic boundary Thurston’s approach to hyperbolization by means of geometric triangulations. In particular, we introduce moduli for (partially) truncated hyperbolic tetrahedra, and we discuss consistency and completeness equations. Moreover, building on previous work of Ushijima, we extend Weeks’ tilt formula algorithm, which computes th...
متن کاملApproved cum laude.
2000 Degree in Mathematics at the University of Pisa. Dissertation with title " Polyhedral decomposition of hyperbolic manifolds with geodesic boundary " , supervisor prof. C. Petro-nio. Approved cum laude. dissertation with title " Deforming triangulations of hyperbolic 3-manifolds with geodesic boundary " , under the supervision of prof. C. Petronio. Approved cum laude. 2005 Non-permanent pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005